396 research outputs found

    Bringing Spatial Interaction Measures into Multi-Criteria Assessment of Redistricting Plans Using Interactive Web Mapping

    Full text link
    Redistricting is the process by which electoral district boundaries are drawn, and a common normative assumption in this process is that districts should be drawn so as to capture coherent communities of interest (COIs). While states rely on various proxies for community illustration, such as compactness metrics and municipal split counts, to guide redistricting, recent legal challenges and scholarly works have shown the failings of such proxy measures and the difficulty of balancing multiple criteria in district plan creation. To address these issues, we propose the use of spatial interaction communities to directly quantify the degree to which districts capture the underlying COIs. Using large-scale human mobility flow data, we condense spatial interaction community capture for a set of districts into a single number, the interaction ratio (IR), which can be used for redistricting plan evaluation. To compare the IR to traditional redistricting criteria (compactness and fairness), and to explore the range of IR values found in valid districting plans, we employ a Markov chain-based regionalization algorithm (ReCom) to produce ensembles of valid plans, and calculate the degree to which they capture spatial interaction communities. Furthermore, we propose two methods for biasing the ReCom algorithm towards different IR values. We perform a multi-criteria assessment of the space of valid maps, and present the results in an interactive web map. The experiments on Wisconsin congressional districting plans demonstrate the effectiveness of our methods for biasing sampling towards higher or lower IR values. Furthermore, the analysis of the districts produced with these methods suggests that districts with higher IR and compactness values tend to produce district plans that are more proportional with regards to seats allocated to each of the two major parties.Comment: 12 figure

    Ecosystem shift of a mountain lake under climate and human pressure : A move out from the safe operating space

    Get PDF
    A multiproxy approach including chironomid, diatom, pollen and geochemical analyses was applied on short gravitational cores retrieved from an alpine lake (Lacul Balea) in the Southern Carpathians (Romania) to unveil how this lake responded to natural and anthropogenic forcing over the past 500 years.On the basis of chironomid and diatom assemblage changes, and supported by sediment chemical data and historical information, we distinguished two main phases in lake evolution. Before 1926 the lake was dominated by chironomids belonging to Micropsectra insignilobus-type and benthic diatoms suggesting well-oxygenated oligotrophic environment with only small-scale disturbance. We considered this state as the lake's safe operational space. After 1926 significant changes occurred: Tanytarsus lugens-type and T. mendax-type chironomids took over dominance and collector filterers increased until 1970 pointing to an increase in available nutrients. The diatom community showed the most pronounced change between 1950 and 1992 when planktonic diatoms increased. The highest trophic level was reconstructed between 1970 and 1992, while the indicator species of increasing nutrient availability, Asterionella formosa spread from 1982 and decreased rapidly at 1992. Statistical analyses evidenced that the main driver of the diatom community change was atmospheric reactive nitrogen (Nr) fertilization that drastically moved the community towards planktonic diatom dominance from 1950. The transformation of the chironomid community was primarily driven by summer mean temperature increase that also changed the dominant feeding guild from collector gatherers to collector falterers. Our results overall suggest that the speed of ecosystem reorganisation showed an unprecedented increase over the last 100 years; biological systems in many cases underwent threshold type changes, while several system components displayed non-hysteretic change between alternating community composition. We conclude that Lake Balea is outside of its safe operating space today. The main trigger of changes since 1926 was climate change and human impact acting synergically. (C) 2020 The Authors. Published by Elsevier B.V.Peer reviewe

    A Method of Intervals for the Study of Diffusion-Limited Annihilation, A + A --> 0

    Full text link
    We introduce a method of intervals for the analysis of diffusion-limited annihilation, A+A -> 0, on the line. The method leads to manageable diffusion equations whose interpretation is intuitively clear. As an example, we treat the following cases: (a) annihilation in the infinite line and in infinite (discrete) chains; (b) annihilation with input of single particles, adjacent particle pairs, and particle pairs separated by a given distance; (c) annihilation, A+A -> 0, along with the birth reaction A -> 3A, on finite rings, with and without diffusion.Comment: RevTeX, 13 pages, 4 figures, 1 table. References Added, and some other minor changes, to conform with final for

    Numerical atomic orbitals for linear scaling

    Full text link
    The performance of basis sets made of numerical atomic orbitals is explored in density-functional calculations of solids and molecules. With the aim of optimizing basis quality while maintaining strict localization of the orbitals, as needed for linear-scaling calculations, several schemes have been tried. The best performance is obtained for the basis sets generated according to a new scheme presented here, a flexibilization of previous proposals. The basis sets are tested versus converged plane-wave calculations on a significant variety of systems, including covalent, ionic and metallic. Satisfactory convergence (deviations significantly smaller than the accuracy of the underlying theory) is obtained for reasonably small basis sizes, with a clear improvement over previous schemes. The transferability of the obtained basis sets is tested in several cases and it is found to be satisfactory as well.Comment: 9 pages with 2 encapsulated postscript figures, submitted to Phys. Rev.

    An overview of the higher level classification of Pucciniomycotina based on combined analyses of nuclear large and small subunit rDNA sequences

    Get PDF
    Mycologia, Vol. 98, nº6In this study we provide a phylogenetically based introduction to the classes and orders of Pucciniomycotina (5Urediniomycetes), one of three subphyla of Basidiomycota. More than 8000 species of Pucciniomycotina have been described including putative saprotrophs and parasites of plants, animals and fungi. The overwhelming majority of these(,90%) belong to a single order of obligate plant pathogens, the Pucciniales (5Uredinales), or rust fungi. We have assembled a dataset of previously published and newly generated sequence data from two nuclear rDNA genes (large subunit and small subunit) including exemplars from all known major groups in order to test hypotheses about evolutionary relationships among the Pucciniomycotina. The utility of combining nuc-lsu sequences spanning the entire D1-D3 region with complete nuc-ssu sequences for resolution and support of nodes is discussed. Our study confirms Pucciniomycotina as a monophyletic group of Basidiomycota. In total our results support eight major clades ranked as classes (Agaricostilbomycetes, Atractiellomycetes, Classiculomycetes,Cryptomycocolacomycetes,Cystobasidiomycetes, Microbotryomycetes,Mixiomycetes and Pucciniomycetes) and 18 orders

    Extracorporeal liver assist device to exchange albumin and remove endotoxin in acute liver failure: Results of a pivotal pre-clinical study

    Get PDF
    Background & AimsIn acute liver failure, severity of liver injury and clinical progression of disease are in part consequent upon activation of the innate immune system. Endotoxaemia contributes to innate immune system activation and the detoxifying function of albumin, critical to recovery from liver injury, is irreversibly destroyed in acute liver failure. University College London-Liver Dialysis Device is a novel artificial extracorporeal liver assist device, which is used with albumin infusion, to achieve removal and replacement of dysfunctional albumin and reduction in endotoxaemia. We aimed to test the effect of this device on survival in a pig model of acetaminophen-induced acute liver failure.MethodsPigs were randomised to three groups: Acetaminophen plus University College London-Liver Dialysis Device (n=9); Acetaminophen plus Control Device (n=7); and Control plus Control Device (n=4). Device treatment was initiated two h after onset of irreversible acute liver failure.ResultsThe Liver Dialysis Device resulted in 67% reduced risk of death in acetaminophen-induced acute liver failure compared to Control Device (hazard ratio=0.33, p=0.0439). This was associated with 27% decrease in circulating irreversibly oxidised human non-mercaptalbumin-2 throughout treatment (p=0.046); 54% reduction in overall severity of endotoxaemia (p=0.024); delay in development of vasoplegia and acute lung injury; and delay in systemic activation of the TLR4 signalling pathway. Liver Dialysis Device-associated adverse clinical effects were not seen.ConclusionsThe survival benefit and lack of adverse effects would support clinical trials of University College London-Liver Dialysis Device in acute liver failure patients

    Improved X-ray detection and particle identification with avalanche photodiodes

    Full text link
    Avalanche photodiodes are commonly used as detectors for low energy x-rays. In this work we report on a fitting technique used to account for different detector responses resulting from photo absorption in the various APD layers. The use of this technique results in an improvement of the energy resolution at 8.2 keV by up to a factor of 2, and corrects the timing information by up to 25 ns to account for space dependent electron drift time. In addition, this waveform analysis is used for particle identification, e.g. to distinguish between x-rays and MeV electrons in our experiment.Comment: 6 pages, 6 figure

    Detection of solar-like oscillations from Kepler photometry of the open cluster NGC 6819

    Get PDF
    Asteroseismology of stars in clusters has been a long-sought goal because the assumption of a common age, distance and initial chemical composition allows strong tests of the theory of stellar evolution. We report results from the first 34 days of science data from the Kepler Mission for the open cluster NGC 6819 -- one of four clusters in the field of view. We obtain the first clear detections of solar-like oscillations in the cluster red giants and are able to measure the large frequency separation and the frequency of maximum oscillation power. We find that the asteroseismic parameters allow us to test cluster-membership of the stars, and even with the limited seismic data in hand, we can already identify four possible non-members despite their having a better than 80% membership probability from radial velocity measurements. We are also able to determine the oscillation amplitudes for stars that span about two orders of magnitude in luminosity and find good agreement with the prediction that oscillation amplitudes scale as the luminosity to the power of 0.7. These early results demonstrate the unique potential of asteroseismology of the stellar clusters observed by Kepler.Comment: 5 pages, 4 figures, accepted by ApJ (Lett.

    Stellar Astrophysics and Exoplanet Science with the Maunakea Spectroscopic Explorer (MSE)

    Full text link
    The Maunakea Spectroscopic Explorer (MSE) is a planned 11.25-m aperture facility with a 1.5 square degree field of view that will be fully dedicated to multi-object spectroscopy. A rebirth of the 3.6m Canada-France-Hawaii Telescope on Maunakea, MSE will use 4332 fibers operating at three different resolving powers (R ~ 2500, 6000, 40000) across a wavelength range of 0.36-1.8mum, with dynamical fiber positioning that allows fibers to match the exposure times of individual objects. MSE will enable spectroscopic surveys with unprecedented scale and sensitivity by collecting millions of spectra per year down to limiting magnitudes of g ~ 20-24 mag, with a nominal velocity precision of ~100 m/s in high-resolution mode. This white paper describes science cases for stellar astrophysics and exoplanet science using MSE, including the discovery and atmospheric characterization of exoplanets and substellar objects, stellar physics with star clusters, asteroseismology of solar-like oscillators and opacity-driven pulsators, studies of stellar rotation, activity, and multiplicity, as well as the chemical characterization of AGB and extremely metal-poor stars.Comment: 31 pages, 11 figures; To appear as a chapter for the Detailed Science Case of the Maunakea Spectroscopic Explore
    corecore